Influence of medical shock waves on healthy muscle tissue.

Conference Paper - July 2016
DOI: 10.13140/RG.2.1.3884.3820

5 authors, including:

Kenneth Craig
Kompass Health Associates & Kompass FlashWave Treatment Centers Inc.
29 PUBLICATIONS 34 CITATIONS

Cristina Maria D'Agostino
Istituto Clinico Humanitas IRCCS
34 PUBLICATIONS 138 CITATIONS

Wolfgang Schaden
16 PUBLICATIONS 1,104 CITATIONS

Some of the authors of this publication are also working on these related projects:

Extracorporeal ShockWave Therapy (ESWT) View project

Acoustic stimulation and tropism on skeletal muscles: Tissue resilience & regeneration in sports and ageing ppt View project
Influence of medical shock waves on healthy muscle tissue.

Vincent KC1,2, d’Agostino C3, Schaden W4,5, Karalus P1, Grant L1

1Kompass GW Sports Medicine (Victoria, Australia), 2Kompass Health Associates (Auckland, New Zealand) 3Rehabilitation Department, Humanitas Research Hospital (Milan, Italy), 4AUVA Trauma Centre, 5Ludwig Boltzmann Institute for Experimental & Clinical Traumatology (Vienna, Austria).

Introduction
Competitive sport requires each athlete to be at peak performance at all times. This is often a challenging task to manage, as overuse and fatigue syndromes often impede performance. For over a decade shockwave therapy (SWT) have been utilised successfully to manage sports injuries1. Our investigation aimed to determine the effects of SWT on muscle tissue of healthy subjects.

Methods
Four golfers and weightlifters were recruited for this project. Weightlifter baseline (BS) and post-intervention (PI) data was collected from activation patterns of six muscles over five repetitions of a 120kg loaded back-squat. Personal-best (PB) back-squat records of each weightlifter was noted and compared PI. Golfers hit 20 balls with a 7-iron and each swing speed, club-ball interface, and ball distance was measured utilising FlightScope®. 500 acoustic impulses were administered over selected muscles relevant to each sport over two session conducted at two week intervals utilising an electrohydraulic generator (OrthoGold-100). PI data was collected at week8.

Result
Golf - increases in both swing speed and ball distance was noted in each golfer with the mean average (MA) recorded as being: Swing-speed (BS: 140.21km/h – PI: 147.12km/h), club-ball interface (BS: 1.32m/sec – PI: 1.46m/sec), Ball distance (BS: 143.25m – PI: 167.4m). Weightlifting – sEMG activation patterns recorded the following averages over six different muscles throughout each back-squat (BS: 1588.08üv/back-squat – PI: 1322.87üv/back-squat). PB back-squat score avg. (BS: 340kgs – PI: 401kgs).

Discussion
Our observations utilising sport specific measurements suggests that SWT had a positive influence on muscle output and performance. Although an overall improvement in performance was observed in both sporting disciplines and in each athlete, but of note was the reduced muscle expenditure required to complete a similar task PI, as observed in weightlifting. From what that has been presently...
elucidated of the positive mechanotransductive impact of SWT on human tissue1. It is plausible to suggest that SWT modulates a favourable biocellular and molecular response in muscle tissue,1 offering the potential to reduce, even prevent overuse syndromes in sports. This case report has its limitations (eg. small sample size) however the observations are encouraging and opens new possibilities in sports science and medicine, inviting further investigation and collaboration in this area.

Author Contact:
nopain@xtra.co.nz

Reference