The link between shockwaves and innate immunity – the main working mechanism?

Johannes Holfeld
Dept. of Cardiac Surgery
Innsbruck Medical University, Austria
Effects

Extracorporeal Shock Wave Therapy Induces Therapeutic Lymphangiogenesis in a Rat Model of Secondary Lymphoedema

F. Serizawa a, K. Ito b, M. Matsubara c, A. Sato a, b, H. Shimokawa b, S. Satomi a

Shock Wave-Pretreated Bone Marrow Cells Further Improve Left Ventricular Function After Myocardial Infarction in Rabbits

Jiunn-Jye Sheu, a Chen-Kwan Sun, a Li-Teh Chang, b Hsiu-Yu Fang, b Sheng-Ying Chung, b Sarah Chu a, b Morgan Fu, a Fan-Yen Lee, a Ying-Hsien Kao, b Shuey-Fat Ko, b Ching-Jen Wang, a Chia-Hung Yen, b Steve Leu, a and Hon-Kan Yip, a Kaohsiung and Pingtung, Taiwan, ROC

VEGF Modulates Angiogenesis and Osteogenesis in Shockwave-Promoted Fracture Healing in Rabbits

Ching-Jen Wang, M.D. a, b, † Ko-Er Huang, M.D. ‡ Yi-Chih Sun, B.A. ‡ Ya-Ju Yang, B.A. ‡ Jih-Yang Ko, M.D. a, b, † Lin-Hsin Wong, M.D., a, b and Peng-Sheng Wang, Ph.D. †

*Department of Orthopedics, †Department of Otolaryngology, and ‡Department of Medical Research, Chang Gung University College of Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center Kaohsiung, Taiwan

Effect of shock wave number on renal oxidative stress and inflammation

Daniel L. Clark, Bret A. Connors, Andrew P. Evan, Rajash K. Handa and Sujuan Gao*

Department of Anatomy and Cell Biology, and *Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

Accepted for publication 4 January 2010

Extracorporeal shock waves: From lithotripsy to anti-inflammatory action by NO production

Sofia Mariotto a, 1, Elisabetta Cavalieri a, 1, Ernesto Amelio b, Anna Rosa Ciampa c, Alessandra Carcereri de Prati a, Ernst Marlinghaus c, Sergio Russo d, Hisanori Suzuki a, 2

*Department of Neuroscience and Vision, Section of Biochemistry, University of Verona, Strada Le Grazie 6, 37134 Verona, Italy
† Shock Wave Unit, Hand Surgery Department, Polyclinic G.B. Rossi, Largo L.A. Scuro 10, 37134 Verona, Italy
‡ Department of Orthopaedics, Polyclinic Federico II, University of Naples, Via S. Pansini 5, 80131 Naples, Italy

Received 7 June 2004; revised 30 November 2004
RNA
so many effects...
same control unit?
RNA content
cytosolic RNA
membrane permeability

CTR

SWT

ctr 2h.002

SWT 2h.002
known effect
What happens with RNA?
Toll-like receptor 3

Nature Reviews Immunology 2006
Pilot: TLR-3 activation in HUVECs

TLR-3 Poly I:C stimulated

TLR-3 mRNA

<table>
<thead>
<tr>
<th></th>
<th>CTRL</th>
<th>2h</th>
<th>4h</th>
<th>6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2h</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>4h</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>6h</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Significance levels: *** at 6h
Part I

in vitro experiments
TLR-3 reporter cells
positive proof
TLR-3 gene knock-down with siRNA

negative proof!

read-out gene:
Part II

in vivo experiments
Animal model

hind limb ischemia

wild type vs. TLR-3 k.o. mice

Time Course:

HLI 3 weeks +24h +28h + 4 weeks
Shock Wave therapy

• Molecular Biology
• Molecular Biology
• IHC
• IHC
• Laser Doppler
TLR-3 signalling
TLR-3 signalling – in vivo

TRIF Western in vivo ko

<table>
<thead>
<tr>
<th>Condition</th>
<th>rel. protein expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR3+HL1+SWT72h</td>
<td>0</td>
</tr>
<tr>
<td>TLR3+HL72h</td>
<td>50</td>
</tr>
<tr>
<td>WT+HL1 72h</td>
<td>100</td>
</tr>
<tr>
<td>WT+HL1+SWT72h</td>
<td>150</td>
</tr>
</tbody>
</table>

*** P < 0.001
* P < 0.05
TLR-3 signalling – *in vivo*

IRF3 Western in vivo ko

<table>
<thead>
<tr>
<th>Condition</th>
<th>rel protein expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR-3+HL+SWT 72h</td>
<td>*</td>
</tr>
<tr>
<td>TLR-3+HL 72h</td>
<td>**</td>
</tr>
<tr>
<td>WT+HL 72h</td>
<td></td>
</tr>
<tr>
<td>WT+HL+SWT 72h</td>
<td></td>
</tr>
</tbody>
</table>
TLR-3 signalling – in vivo

![Diagram showing TLR-3 signalling pathway]

HLI in vivo ko Animals

Traf 6 mRNA 72h

<table>
<thead>
<tr>
<th>Condition</th>
<th>Traf 6 mRNA (arbitrary units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR-3+SWT 72h</td>
<td>500 ± 50</td>
</tr>
<tr>
<td>TLR-3+HLI 72h</td>
<td>400 ± 40</td>
</tr>
<tr>
<td>WT+SWT 72h</td>
<td>300 ± 30</td>
</tr>
<tr>
<td>WT+HLI 72h</td>
<td>200 ± 20</td>
</tr>
<tr>
<td>WT+HLI+SWT 72h</td>
<td>100 ± 10</td>
</tr>
</tbody>
</table>

Significance: ***
TLR-3 signalling – in vivo
morphological outcome
immunohistochemistry
Tissue necrosis

Necrosis Score

- TLR-3-/HLI
- TLR-3-/HLI+SWT
- Wt HLI
- Wt HLI+SWT

Day 7, Day 14, Day 21, Day 28

Ctrl, CST
angiogenesis

HLI in vivo ko Animals
KDR mRNA 72h

HLI in vivo ko Animals
PIGF mRNA 72h
angiogenesis

<table>
<thead>
<tr>
<th></th>
<th>Wt HLI+SWT</th>
<th>TLR-3 -/- HLI+SWT</th>
</tr>
</thead>
<tbody>
<tr>
<td>72h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>αSMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>merged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
laser doppler perfusion imaging
laser doppler perfusion imaging

Laser Doppler

- **TLR-3−/−HLI**
- **TLR-3−/−HLI+SWT**
- **Wt HLI**
- **Wt HLI+SWT**

- **Hindlimb perfusion ratio (l vs. r leg)**
 - 0.0
 - 0.2
 - 0.4
 - 0.6
 - 0.8
 - 1.0

- **Days:** Day 0, Day 7, Day 14, Day 21, Day 28

The graph shows the hindlimb perfusion ratio over time for different conditions.
Summary

Shock waves cause

- release of nucleic acids
- stimulation of the innate immune system via TLR-3
- environment for regeneration
- effects are missing in knock-down and knock-out models

- majority of SWT effects are mediated by TLR-3
Innate immunity